Application of Regression Models in Convective Storm Nowcasting
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m
m Inclusion of all candidate predictors without the variable selection procedure.
AL S AEREIER S A B The number of cases relative to the number of IVs.

Identification of correlations between Vs in regression model. VIF of

Introduction

Nowcasting of convective storms is one of the most challenging tasks for
operational weather forecasters. Remote sensing is a vital source of information
about present storm occurrence and development in a high spatial and temporal

resolution — mostly up to few kilometres every 5 min.
Variance inflation factor

From the forecasters’ experience, combining real-time data into only one or two
(VIF)

products is desirable to supply credible and clear information for crucial
decisions. Therefore, we employ regression models to obtain an objective
information about the severe storm probability, having a potential to improve a
real-time warning process.

predictor x; is calculated based on the linear relationship between the

x; \{x;}.

predictor X; and the other independent variables [x,, x,, ...,

Stepwise backward Repeat: remove the most insignificant IVs and reestimate the model. Stop: no

elimination insignificant IV is left.

Repeat: remove |V, if its multivariable sign is different from the univariable
sign. Stop: all selected IVs have a correct sign.

Leave-one-out cross-
validation (LOOCV) results against the remaining single case.

0dds ratio (OR) The mean change in response variable for one unit of change in IV, while
260 4 I
holding other IVs in the model constant.

Evaluation of classification models; RE: x% severe storms that are correctly
classified. PR:
combination of PR and RE.

Motivation

Repeats over sample size N: take N-1 cases to build the model and test

Is it going to be a severe storm?

e Already in the first 30 min of the
storm lifetime, there is a significant

difference in minimum brightness
temperature in IR10.8 (MSG/SEVIRI).

The storm lifetime starts when the
radar reflectivity exceeds 30 dBz.

Recall (RE), Precision (PR),
F1-score

Severe x% of classified severe storms is really severe. F1 score: a
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Regression modelling in the small
data set (EPV<10) has a problem with

Dependent variable:

sev.phenomena

Radar Lightning Satellite
Data convergence of the maximum e 1,(30 = =
p = 0.013**
Evolution of 72 isolated convective storms from 2016 and 2017, which formed likelihood formula. Therefore, after — nwaor b= 0157
in the region of Central Europe, is studied by means of multi-sensor the variable selection, we employ :iz:; p — 0005 -
observations from the first 30, 60 and 90 min of the monitored storm lifetime: the Logistic Regression Model (LRM) — - -l
* response variable: severe/non-severe (24/48) classification based on the individually for each RAD, LSD, and T e, @00 758 e
*p<0.1; **p<0.05; ***p<0.01

SAT observations (Fig. 2). Rt
Fig. 2: The LRM 1Vs and odd ratios estimated

separately for RAD, LSD and SAT observations.
The training data are from the first 30 min of
the storm lifetime.

European Severe Weather Database (ESWD)

e independent variable (IV): total 54 Vs from radar (RAD), lightning (LSD) and
satellite (SAT) observations

m-m
m RC area, 30 dBZ reflectivity threshold

_ RC volume, reflectivity above 4 dBZ km3

The regularized regression model Elastic Net (ENet) is employed for a full
model involving two regularization terms a and A in the maximum

VOL44 RC volume, reflectivity above 44 dBZ kms3 likelihood formula. The ENet allows: i) selection of relevant IVs, and ii)
m max of reflectivity within RC dBZ

shrinking regression coefficients towards zero so that we avoid overfitting

max height of reflectivity x from -10 to 70 dBZ (5 dBZ step)

m a.s.l.
MAX_R_height mean height of the area with the highest reflectivity of RC m a.s.l. of fegresalen, coefficients. The optlmal penalty terms are searched by
Vertically Integrated Liquid (Greene and Clark, 1972) kg/m? varying a over a grid of 0-1 by 0.02, searching for the best performance of
VD VIL density 8/m each A by the LOOCV (Fig. 3).
VIL_SUM VIL summary kg/m3
_ Severe Hail Index (Witt et al., 1998) -
[ probability of Hail (Waldvogel et al., 1978) % Predictors Coefficient ~ Odd_ratio Recall [%] Precision [%] F1 Score
m Probability of Severe Hail (Witt et al., 1998) % (Intercept) 5.995 401.259 LRM-RAD 64 78 0.70
m Maximum Estimated Hail Size (Witt et al., 1998) mm RAD.AREA 0.005 1.00 LRM-LSD 36 &9 0.52
LSD.sum_curr 0 pos -0.005 0.995 LRM-SAT 68 69 0.65
Tab. 1: RAD IVs derived by CELLTRACK (Kyznarova and Novak, 2009), based on the radar reflectivity and LSD.LJ 0.218 1.244 '
SAT.BT 0.033 0.967 ENet 7 A 0.83

sounding data. For all the above variables, values are computed within the area of the reflectivity core (RC)
together with their maxima, medians or means during the storm life-cycle.

—m
_ Minimum brightness temperature (BT) pixel in IR10.8

Fig. 3: The LRM IVs and odd ratios estimated
separately for RAD, LSD and SAT observations.
The training data are from the first 30 min of
the storm lifetime.

Fig. 4: Validation of the LRMs and ENet models
based on the LOOCV method.
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Fig. 5: Plot of the probability of the storm severity (0/1) vs. RAD.AREA (left) and SAT.BT (right),
together with conditional distributions. Data are from the first 30 min of the storm lifetime.

Sum of peak current of CG/CC strokes kA

Tab. 2: SAT IVs (top) from MSG/SEVIRI 5min Rapid Scan and LSD IVs (bottom) from CELDN, detected for the
storm area by hierarchical clustering in R (www.r-project.org).

Variable selection Conclusion

e Multicollinearity: strongly correlated IVs with VIF>4 are excluded from a full * Based on regression models, the essential severe storm predictors in

model. For RAD, the IVs are preselected based on scientific knowledge. the first 30 min of the storm lifetime are:

* Sign OK: Selection of IVs based on plausibility of a sign of the multivariable * maximum lightning jump,

regression coefficient. * radar echo-tops and area of identified reflectivity cores,

* minimum BTs in the 10.8 um spectral band.

e Stepwise backward: elimination of IVs with p-value > 0.157, contributing

more likely to noise than to the model predictive information. * The elastic net:

* handled the model stability problem in the small data set,
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Fig. 1: Multicollinearity between RAD IVs (left) and the variable selected based on the combination
of scientific knowledge and VIF<4 criteria (right).



